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ABSTRACT This study investigated the dynamics of Aspergillus fumigatus azole-
resistant phenotypes in two compost heaps with contrasting azole exposures: azole
free and azole exposed. After heat shock, to which sexual but not asexual spores are
highly resistant, the azole-free compost yielded 98% (49/50) wild-type and 2% (1/50)
azole-resistant isolates, whereas the azole-containing compost yielded 9% (4/45)
wild-type and 91% (41/45) resistant isolates. From the latter compost, 80% (36/45) of
the isolates contained the TR46/Y121F/T289A genotype, 2% (1/45) harbored the
TR46/Y121F/M172I/T289A/G448S genotype, and 9% (4/45) had a novel pan-triazole-
resistant mutation (TR46

3/Y121F/M172I/T289A/G448S) with a triple 46-bp promoter
repeat. Subsequent screening of a representative set of clinical A. fumigatus isolates
showed that the novel TR46

3 mutant was already present in samples from three
Dutch medical centers collected since 2012. Furthermore, a second new resistance
mutation was found in this set that harbored four TR46 repeats. Importantly, in the
laboratory, we recovered the TR46

3 mutation from a sexual cross between two TR46

isolates from the same azole-containing compost, possibly through unequal crossing
over between the double tandem repeats (TRs) during meiosis. This possible role of
sexual reproduction in the emergence of the mutation was further implicated by the
high level of genetic diversity of STR genotypes in the azole-containing compost.
Our study confirms that azole resistance mutations continue to emerge in the envi-
ronment and indicates compost containing azole residues as a possible hot spot.
Better insight into the biology of environmental resistance selection is needed to re-
tain the azole class for use in food production and treatment of Aspergillus diseases.

IMPORTANCE Composting of organic matter containing azole residues might be
important for resistance development and subsequent spread of resistance muta-
tions in Aspergillus fumigatus. In this article, we show the dominance of azole-
resistant A. fumigatus in azole-exposed compost and the discovery of a new resis-
tance mutation with clinical relevance. Furthermore, our study indicates that current
fungicide application is not sustainable as new resistance mutations continue to
emerge, thereby threatening the use of triazoles in medicine. We provide evidence
that the sexual part of the fungal life cycle may play a role in the emergence of re-
sistance mutations because under laboratory conditions, we reconstructed the resis-
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tance mutation through sexual crossing of two azole-resistant A. fumigatus isolates
derived from the same compost heap. Understanding the mechanisms of resistance
selection in the environment is needed to design strategies against the accumula-
tion of resistance mutations in order to retain the azole class for crop protection and
treatment of Aspergillus diseases.

KEYWORDS Aspergillus fumigatus, ascospores, azole resistance, compost heap,
conidiospores, hot spot for resistance development, novel mutation, sexual
reproduction

During the last decade, azole resistance has increasingly been reported in Aspergillus
fumigatus, and it is now a global public health concern (1–11). Triazoles are the

cornerstone of treatment of aspergillosis, and high mortality rates have been reported
in patients with azole-resistant invasive aspergillosis (12–17). Azole resistance may
emerge during azole therapy for patients; however, the extensive use of azole com-
pounds in the environment is thought to be the major driver of resistance selection in
A. fumigatus (18–20). The broad application of azoles for crop protection, material
preservation, and clinical use has caused multiple resistance mutations to emerge.
Although different azole compounds are used in the environment compared to those
in medical applications, similarities in triazole molecule structure may explain the
occurrence of strains that are cross-resistant to triazoles that are used for these different
applications (19, 21). The majority of observed resistance mutations are caused by
alterations in the cyp51A gene encoding the target protein sterol 14�-demethylase.
Typically azole-resistant mutants have a combination of a tandem repeat (TR) in the
promoter and single nucleotide polymorphisms (SNPs) in the coding sequence of this
gene, such as TR34/L98H and TR46/Y121F/T289A (1, 10, 22–25). Figure 1 shows the
history of discovery of promoter and coding region changes in the cyp51A gene of
A. fumigatus in The Netherlands. These TR variants confer different azole resistance
phenotypes, but most result in a pan-azole-resistant profile (26–32). The continued
emergence of new resistance mutations can only be overcome if the critical steps in
resistance development and selection are identified and understood.

Compost (decaying plant waste material) is believed to be an important biological
niche for A. fumigatus, with high densities of conidiospores, where azole residues from
agricultural waste may accumulate (33–35). Whether A. fumigatus is able to complete

FIG 1 (A) Year in which for the first time since 1998 each of the different azole-resistant A. fumigatus isolates with TR promoter mutations was
observed in The Netherlands. (B) Genotype illustration of the azole-resistance mutations in the cyp51A gene (promoter and coding region).
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the whole life cycle in this harsh and competitive compost environment remains
unclear. Use of variations in ways of reproduction exploiting various parts of the life
cycle may be essential for resistance development, and such knowledge is thus critical
for understanding potential hot spots of development, maintenance, and spread of
azole resistance in A. fumigatus. We have previously shown that during azole exposure,
resistance selection is enhanced when A. fumigatus reproduces asexually compared
with nonsporulating controls (36). Beneficial spontaneous mutations produced during
asexual reproduction were selected and accumulated over time. However, A. fumigatus
can benefit from other reproduction modes, such as sexual or even parasexual repro-
duction, in order to create genetic variation (37). In the last decade, there has been
accumulating evidence for cryptic sex in this fungus from population genetics studies,
genome analysis, and the demonstration of a sexual cycle under laboratory conditions
(38–44). However, direct observations or sampling of sexual structures in nature have
not been reported, and the implication for resistance development is unclear.

In fungi, sexual reproduction can enhance adaptation to changing or new environ-
ments (45, 46) as sexual progeny have larger genetic variation compared with asexual
populations. Greater genetic diversity is achieved through meiosis, by crossing over and
chromosome reassortment. Genotyping studies of A. fumigatus show high diversity (39,
47–51), suggesting sexual reproduction in nature. In addition, both mating types are
found in approximately equal proportions in such natural settings, as expected from
balancing selection and Mendelian segregation in sexual crosses. Therefore, the sexual
cycle, in addition to the asexual cycle, might play an important role in the ability of the
fungus to adapt to the azole environment, and compost may provide the right
conditions for sexual reproduction.

In this study, we investigated the azole phenotypes and genotypes of A. fumigatus
in its natural habitat, the compost heap, but with contrasting azole exposures. One
compost heap originated from organic waste with known azole exposure, while the
other was azole free. Our hypothesis was that conditions that allow A. fumigatus to
reproduce in the presence of azole pressure would select for azole-resistant A. fumiga-
tus genotypes, whereas azole-sensitive A. fumigatus strains would be most frequent
under azole-free conditions. In both settings, we searched for evidence of underlying
reproduction modes, i.e., sexual versus asexual. In our opinion, insight into the dynam-
ics of azole resistance selection of A. fumigatus in its natural habitat is essential to
design strategies to prevent or reduce azole resistance development in the environ-
ment and ultimately help to manage the problem of azole-resistant Aspergillus diseases
in patients.

RESULTS
Analysis of fungicide residues from the azole-free compost and azole-containing

compost. In the azole-free compost heap (Droevendaal, Wageningen, The Netherlands),
no fungicide residues were detected (Table 1), while in the azole-containing compost
from Hillegom, four fungicides were detected, three of which (prochloraz, prothiocona-
zole, and tebuconazole) have been shown to cause cross-resistance to medical azoles
(19) (Table 1). These fungicides are used in crop treatments—for instance for both

TABLE 1 Fungicides detected from the azole-free compost samples W5 and W6 and
azole-containing compost samples H1 and H4

Sample(s) Detected fungicide Fungicide concn (mg/kg)

W5, W6 None

H1 Prothioconazole-desthio 0.250
Prochloraz 0.020
Imidacloprid 0.013
Boscalid 0.026

H4 Tebuconazole 0.055
Prothioconazole-desthio 0.068
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spraying and immersion of bulbs prior to cultivation. In addition, in the azole-
containing compost sample, the insecticide imidacloprid and another fungicide,
boscalid, were detected. These pesticides are also used in conventional bulb cultivation
in The Netherlands.

Isolation of A. fumigatus from azole-containing and azole-free compost before
and after heat shock. Before and after heat shock of each of the six samples from the
two sample locations (Fig. 2), colonies with macroscopic and microscopic characteristics
of A. fumigatus were recovered. From each sample, 20 randomly picked colonies were
confirmed as A. fumigatus based on sequence analysis and their ability to grow at 48°C.
Before heat shock, each sample contained more than 105 CFU. After heat shock, all six
samples from the nonazole compost heap (W1 to W6) and two of the six samples from
the azole compost heap (H1 and H4) yielded A. fumigatus isolates ranging from 71 to
~8,000 CFU per g of compost (Fig. 3).

FIG 2 Locations and positions of samples taken from azole-free compost in Wageningen (W1 to W6 [30 cm
apart from top to bottom]) and azole-containing compost in Hillegom (H1 to H6).

FIG 3 A. fumigatus CFU density (CFU per gram of compost) before and after heat shock in samples taken at different positions in an azole-free compost heap
(W1 to W6 [dark blue bars]) and an azole-containing compost heap (H1 to H6 [light blue bars]).
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Azole resistance phenotypes and genotypes. Azole-resistant A. fumigatus was
found in both compost heaps, although the proportion of resistance was different, with
91% (41/45 colonies) resistance in the azole-containing compost compared to only 2%
(1/50) in the azole-free compost. The genotypic variation in the cyp51A gene differed
in the azole-free compost (98% wild type [WT], 2% TR34/L98H) and the azole-containing
compost (9% WT, 80% TR46Y121F/T289A, and 2% TR46Y121F/M172I/T289A/G448S)
(Tables 2 and 3). Moreover, in 9% of the phenotypic azole-resistant isolates, a new
mutation was identified, consisting of a triple repeat of 46 bp of the promoter region
that is present in duplicate in TR46 (TR46

3) combined with four mutations in the cyp51A
gene, namely Y121F, M172I, T289A, and G448S.

The ratio of MAT1-1 to MAT1-2 among the different genotypes was not significantly
different from the expected 1:1 ratio (11:15 and 15:21 for the azole-containing and
azole-free composts, respectively; chi-square values of P � 0.432 and P � 0.317). Ample
genetic variation was present in both compost heaps based on six microsatellite
markers; 26 unique genotypes from the azole-containing heap and 39 from the
azole-free heap were identified (Tables 2 and 3).

Susceptibility testing and gene expression of TR34, TR46, and TR46
3. The mycelial

growth rate (MGR) of the TR variants TR34, TR46, and TR46
3 isolated from the two

compost heaps is shown in Fig. 4. TR46
3/Y121F/M172I/T289A/G448S exerted the fastest

mycelial growth rate on medium supplemented with posaconazole, compared with
TR34/L98H and TR46/Y121F/T289A (analysis of variance [ANOVA], F4, 10 � 369.674; P �

0.01) (Fig. 4). In addition, to compare the susceptibility of TR46
3 with those of TR34 and

TR46, the high resistance of TR46
3/Y121F/M172I/T289A/G448S was confirmed by MIC

testing, displaying a pan-triazole-resistant phenotype to posaconazole, itraconazole,
and voriconazole (Table 4), indicating no in vitro activity of itraconazole and voricona-
zole (MIC, �16 mg/liter) (26).

Expression levels assayed from Cyp51A/actin mRNA ratios showed that even in the
absence of azoles, cyp51A gene expression levels in the TR46

3/Y121F/M172I/T289A/

TABLE 2 Genetic variation in azole-containing compost sample H4 from plant material waste in Hillegom, The Netherlandsa

AZN_NMR
no. Sample

STR3 STR4

Cyp51A Cyp51A SNP Cyp51A SNP Cyp51A SNP Cyp51A Mating type
Genotype �
frequencyA B C A B C

V181-07 H1 33 10 23 6 13 8 TR46 Y121F None T289A None MAT1-2 1 � 3
V181-08 H2 44 8 61 6 12 8 TR46 Y121F None T289A None MAT1-2 2 � 1
V181-09 H3 44 8 7 10 9 7 TR46 Y121F None T289A None MAT1-2 3 � 11
V181-11 H5 42 8 61 7 10 8 WT None None None None MAT1-1 4 � 2
V181-12 H6 35 9 27 8 10 8 WT None None None None MAT1-1 5 � 1
V181-13 H7 44 8 12 10 8 18 TR46 Y121F None T289A None MAT1-2 6 � 1
V181-14 H8 35 11 16 8 7 6 WT None None NONE None MAT1-1 7 � 1
V181-15 H9 42 9 62 10 8 7 TR46 Y121F None T289A None MAT1-2 8 � 2
V181-16 H10 46 8 7 10 8 7 TR46 Y121F None T289A None MAT1-1 9 � 2
V181-19 H13 43 8 11 10 8 18 TR46 Y121F None T289A None MAT1-2 10 � 1
V181-20 H14 33 10 23 6 10 13 TR46 Y121F None T289A None MAT1-2 11 � 1
V181-23 H17 31 8 21 6 12 8 TR46 Y121F None T289A None MAT1-2 12 � 2
V181-32 H26 44 8 12 2 8 6 TR46 Y121F None T289A None MAT1-2 13 � 2
V181-34 H28 55 8 7 6 8 8 TR46 Y121F None T289A None MAT1-1 14 � 1
V181-35 H29 44 8 7 12 9 9 TR46 Y121F M172I T289A G448S MAT1-2 15 � 1
V181-36 H30 26 8 12 6 9 7 TR46

3 Y121F M172I T289A G448S MAT1-1 16 � 2
V181-38 H32 26 7 12 6 8 7 TR46 Y121F None T289A None MAT1-1 17 � 1
V181-39 H33 41 8 7 10 8 8 TR46

3 Y121F M172I T289A G448S MAT1-2 18 � 1
V181-40 H34 25 18 24 8 10 9 TR46 Y121F None T289A None MAT1-1 19 � 1
V181-43 H37 22 4 13 6 9 9 TR46

3 Y121F M172I T289A G448S MAT1-1 20 � 1
V181-44 H38 31 8 23 6 13 8 TR46 Y121F None T289A None MAT1-2 21 � 1
V181-46 H40 26 8 21 11 8 7 TR46 Y121F None T289A None MAT1-1 22 � 1
V181-48 H42 44 8 7 9 9 9 TR46 Y121F None T289A None MAT1-2 23 � 1
V181-49 H43 24 6 20 12 8 7 TR46 Y121F None T289A None MAT1-1 24 � 1
V181-50 H44 44 8 12 10 8 7 TR46 Y121F None T289A None MAT1-2 25 � 1
V181-51 H45 44 8 17 2 3 7 TR46 Y121F None T289A None MAT1-2 26 � 1
aSTR3 A, B, and C and STR4 A, B, and C are six microsatellite markers. The genotype counting is based on the difference between the STR3 A, B, and C and STR4 A, B,
and C markers (differences higher than 2 repeats), CYP51 promoter, and point mutation in the coding region and mating type. The genotype classification is based
on whether the number of STR repeat differences is higher than 2 repeats.
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G448S strain were significantly higher than those in the WT by ANOVA (F3, 7 � 38.279,
and P � 0.001) and post hoc least significant difference (LSD) test (P � 0.01 for
TR46

3/Y121F/M172I/T289A/G448S versus TR34/L98H and P � 0.05 for TR46
3/Y121F/

M172I/T289A/G448S versus TR46/Y121F/T289A), which suggests that the repeats in the
promoter region are able to generate more cyp51A transcript and likely CYP51 protein
to cope with azole stress and therefore contribute to a resistant phenotype (Fig. 5).

Analysis of clinical isolates from the Dutch national surveillance program. The
A. fumigatus culture collection of the Dutch national Aspergillus resistance surveillance
was used to determine whether TR46

3/Y121F/M172I/T289A/G448S was present in clin-
ical isolates. All clinical A. fumigatus isolates collected between 2012 and 2015 that
harbored a Y121F mutation were investigated for the presence of TR46

3 by PCR. Among
98 Y121F-harboring isolates, 3 were identified with TR46

3. In addition, one isolate was
found with four TRs (TR46

4) in combination with the four mutations in the cyp51A gene:
TR46

4/Y121F/M172I/T289A/G448S.
One TR46

3/Y121F/M172I/T289A/G448S isolate was recovered from a sputum sample
from a 34-year-old female in 2013 in the western part of The Netherlands. The patient

TABLE 3 Genetic variation in azole-free compost sample W5 from an organic plant waste compost heap in Wageningen, The
Netherlandsa

AZN_NMR
no. Sample

STR3 STR4

Cyp51A Cyp51A Mating type
Genotype �
frequencyA B C A B C

V182-18 W1 34 9 8 7 8 31 WT WT MAT1-2 1 � 1
V182-19 W2 38 8 12 8 10 20 WT WT MAT1-1 2 � 1
V182-20 W3 30 8 11 8 9 20 WT WT MAT1-2 3 � 4
V182-22 W5 38 10 46 10 8 8 WT WT MAT1-1 4 � 1
V182-23 W6 29 7 11 9 9 18 WT WT MAT1-1 5 � 1
V182-24 W7 26 10 21 8 7 5 WT WT MAT1-2 6 � 1
V182-25 W8 30 8 11 8 9 20 WT WT MAT1-2 7 � 1
V182-27 W10 25 8 8 6 9 8 WT WT MAT1-2 8 � 1
V182-28 W11 13 18 8 7 26 5 WT WT MAT1-2 9 � 1
V182-29 W12 30 8 11 5 9 20 WT WT MAT1-2 10 � 1
V182-30 W13 9 8 8 8 8 6 WT WT MAT1-2 11 � 1
V182-31 W14 30 8 8 7 9 19 WT WT MAT1-1 12 � 2
V182-32 W15 13 8 10 8 8 3 WT WT MAT1-1 13 � 1
V182-33 W16 30 8 8 5 9 19 WT WT MAT1-1 14 � 1
V182-34 W17 27 8 30 7 6 5 WT WT MAT1-2 15 � 1
V182-35 W18 27 8 26 10 8 5 WT WT MAT1-2 16 � 4
V182-36 W19 24 8 8 8 11 33 WT WT MAT1-1 17 � 2
V182-37 W20 50 8 8 8 9 25 WT WT MAT1-2 18 � 1
V182-38 W21 10 8 8 5 7 18 WT WT MAT1-1 19 � 1
V182-39 W22 30 8 11 5 7 18 WT WT MAT1-2 20 � 1
V182-40 W23 36 10 30 22 9 8 WT WT MAT1-1 21 � 1
V182-42 W25 50 8 8 10 8 5 WT WT MAT1-1 22 � 1
V182-43 W26 8 7 11 7 8 10 WT WT MAT1-1 23 � 1
V182-45 W28 30 8 11 8 9 21 WT WT MAT1-2 24 � 1
V182-46 W29 25 8 21 14 8 5 WT WT MAT1-2 25 � 1
V182-51 W34 28 10 8 8 8 8 WT WT MAT1-1 26 � 1
V182-52 W35 29 16 8 10 26 5 WT WT MAT1-2 27 � 1
V182-54 W37 38 8 12 5 10 21 WT WT MAT1-1 28 � 1
V182-55 W38 32 8 8 7 9 19 WT WT MAT1-2 29 � 3
V182-57 W40 28 9 12 8 6 11 TR34 L98H MAT1-1 30 � 1
V182-58 W41 36 8 9 7 9 8 WT WT MAT1-2 31 � 1
V182-59 W42 45 9 10 10 8 10 WT WT MAT1-1 32 � 1
V182-60 W43 37 8 20 6 7 5 WT WT MAT1-1 33 � 1
V182-61 W44 29 8 11 8 9 27 WT WT MAT1-2 34 � 1
V182-63 W46 34 8 8 5 9 8 WT WT MAT1-2 35 � 1
V182-64 W47 37 22 21 6 8 5 WT WT MAT1-2 36 � 1
V182-65 W48 39 8 8 8 9 21 WT WT MAT1-2 37 � 1
V182-66 W49 15 8 20 5 7 5 WT WT MAT1-2 38 � 1
V182-67 W50 26 10 8 31 29 6 WT WT MAT1-2 39 � 1
aSTR3 A, B, and C and STR4 A, B, and C are six microsatellite markers. The genotype counting is based on the difference between STR3 A, B, and C and STR4 A, B, and
C (differences higher than 2 repeats), CYP51 promoter, and point mutation in the coding region and mating type. The genotype classification is based on whether
the number of STR repeat differences is higher than 2 repeats.
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was hospitalized for treatment of synovial cell sarcoma with pleural metastasis. Com-
puted tomography (CT) of the lungs showed no evidence for Aspergillus disease. A
second patient was admitted to a hospital in the northwest part of The Netherlands in
2015. The patient was treated for asthma as an outpatient because of shortness of
breath. Again, CT of the chest showed no evidence for Aspergillus disease.

A third patient was identified through an A. fumigatus isolate that was sent in for
MIC testing. The isolate was cultured in 2012 from a 43-year-old patient with chronic
obstructive pulmonary disease (COPD) admitted to a hospital in the eastern part of The
Netherlands. The patient was admitted with a community-acquired pneumonia and
received therapy with posaconazole in addition to antibacterial therapy. Because
sputum cultures remained positive after 2 weeks of posaconazole therapy, the strain
was sent for MIC testing. However, a definite diagnosis of invasive pulmonary asper-
gillosis could not be made.

The TR46
4 isolate was cultured in 2012 from the right ear of a 34-year-old male who

was treated in the northern part of the country for cholesteatoma. The fungus may
have contributed to the chronic infection, but there was no evidence for invasive
disease.

The generation of TR46
3 via sexual reproduction of two TR46 strains from the

azole-containing compost. To obtain proof of principle that sexual reproduction
could cause TR mutations, we performed a sexual cross between a pair of strains from
the same azole-containing compost sample with the TR46/Y121F/T289A mutation but
of opposite mating types (isolates H40 [MAT1-1/TR46/Y121F/T289A] and H35 [MAT1-2/
TR46/Y121F/T289A]) (38, 44). After 4 months, cleistothecia were harvested, and 105

ascospores were heat shocked and plated on malt extract agar (MEA) with a high
concentration of posaconazole (2 mg/liter), which showed the largest difference in MGR
between TR46 (nearly no growth) and TR46

3 (with growth). Five hundred colonies that
grew well in the presence of posaconazole were selected for sequence analysis of the

FIG 4 Azole-resistance assay based on MGR of the TR34, TR46, and TR46
3 variants against voriconazole (Vor), itraconazole

(Itr), and posaconazole (Pos). MEA was supplemented with 2 mg/liter of Vor and Itr, respectively, with Pos at 0.5 mg/liter.
None, without any azoles. Error bars indicate the standard error of the mean (SEM). The MGR was determined by
averaging the colony diameters (in millimeters) as measured in two randomly chosen perpendicular directions.

TABLE 4 In vitro activities of itraconazole, voriconazole, and posaconazole against
A. fumigatus isolates harboring TR46

3 compared with published resistance profiles of TR34,
and TR46

Isolate type

MIC range (mg/liter) fora:

Source or referenceItr Vor Pos

TR34/L98H �16 4–8 0.25–0.5 5
TR46/Y121F/T289A 4/16 �16 0.25–2 21
TR46

3/Y121F/M172I/T289A/G448S �16 �16 1 This studyb

aItr, itraconazole; VOR, voriconazole; POS, posaconazole.
bTwo isolates from compost plus 3 clinical isolates.
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cyp51A gene. Of these, 499 isolates were TR46/Y121F/T289A, but one colony contained
the novel TR46

3/Y121F/T289A mutation. This shows that TR46
3 can indeed arise from a

sexual cross between isolates with TR46/Y121F/T289A under laboratory conditions.

DISCUSSION
Discovery of novel azole resistance mutations and the hot spot for resistant

A. fumigatus. In this study, we observed that azole-containing compost harbored
predominantly azole-resistant A. fumigatus, whereas in azole-free compost almost
exclusively wild-type A. fumigatus was found. Our study suggests that azole exposure
to A. fumigatus in its natural habitat at least sustains the presence of azole resistance.
This, and similar habitats, could act as a “hot spot”—i.e., providing a source of
azole-resistant A. fumigatus from which airborne conidia may migrate and cause
disease in susceptible hosts, contribute to further azole resistance development, or
both.

We identified a new resistance mutation (TR46
3/Y121F/M172I/T289A/G448S) in the

azole-exposed compost. Analysis of clinical isolates that had been collected in the
national surveillance program of The Netherlands showed that since 2012, each year at
least one patient harbored an isolate with this new resistance mutation. Little is known
about the generation mechanism and migration rate of resistant A. fumigatus, but the
observation that the TR34/L98H variant is now the most frequently reported mutation
globally (1–5, 7–10, 52, 53) suggests that spores can rapidly spread from a single source
and over long distances. The TR46/Y121F/T289A mutation also showed rapid migration,
as after its discovery in December 2009, the mutation was recovered from patients from
six different hospitals in The Netherlands within 1 year (26). In line with these obser-
vations, the TR46

3/Y121F/M172I/T289A/G448S mutation was recovered from unrelated
patients in three different hospitals in The Netherlands over a 3-year period, indicating
that the resistance mutation might have migrated across the country, but at a slower
pace compared to the other mutations. Although the mutation was found to only
colonize patients, we believe that isolates harboring TR46

3/Y121F/M172I/T289A/G448S
may ultimately cause invasive infections—potentially after accumulation of additional
mutations allowing adaptation to the human host—as the resistance trait has probably
survived in the environment for several years, in competition with other azole-resistant
or wild-type isolates, indicating comparable fitness. This would imply that the cost of
resistance of carrying TR46

3 is limited and/or that compensatory mutations easily

FIG 5 Gene expression levels of cyp51A in TR variants (WT TR34, TR46, and TR46
3). Bars show averages from

nine replicates, and error bars indicate the standard error of the mean (SEM).
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emerge since otherwise selection would act against this mutation. In addition to TR46
3,

a clinical azole-resistant isolate with four copies of TR46 was found. Although this
genotype was not recovered from the environment, we believe that given the similarity
of the resistance mutations to other TR46 variants, it originated via similar mechanisms
to the other TR mutations, which included exposure to azole fungicides. These obser-
vations confirm our concern that new azole resistance mutations will continue to
emerge in the environment if we persevere with our current practices of azole
fungicide use. The azole-containing habitat may serve as an evolutionary incubator
with increased selective pressure on recombination that benefits the fungus through
increased fitness or increased resistance, thus facilitating its survival. With increasing
azole resistance frequencies and greater diversity in resistance mutations, the conse-
quence will be that the clinical role of medical triazoles for the management of
Aspergillus diseases will be marginalized. As the arsenal of available drugs to treat
Aspergillus diseases is already very limited, excess mortality due to azole resistance can
be expected (54). Indeed, case studies show high mortality rates in patients with
azole-resistant invasive aspergillosis (12, 16, 17, 55). Environmental resistance is espe-
cially difficult to manage as it is found in any Aspergillus disease and may occur in any
patient, even those without previous azole therapy (54). Recently, mixed infections due
to azole-susceptible and azole-resistant A. fumigatus strains were reported, which
further complicates timely diagnosis and successful therapy (56, 57).

Our findings therefore underscore the urgent need to further investigate the
evolution of A. fumigatus resistance in the environment as this will provide leads that
enable us to prevent new mutations from emerging. In this way, investigation of the
evolution of resistance may allow earlier detection and earlier intervention, especially
in modification of patient therapy.

The role of sexual reproduction in the emergence of TR46
3/Y121F/M172I/

T289A/G448S. Theoretically, the isolates with TR46
3 mutations could have originated

through both asexual and sexual reproduction. However, heat-shock treatment re-
duced the number of A. fumigatus CFU dramatically (Fig. 3), suggesting that most, if not
all, conidiospores were killed and leaving only the heat-resistant ascospores in the
compost sample. Furthermore, a high genetic diversity was found in the heat-shocked
compost samples, as shown in Tables 2 and 3 for microsatellite loci and mating-type
genes, which is indicative of sampling unique sexual spores rather than clonal conid-
iospores. Importantly, within the population the high microsatellite diversity and equal
mating-type distribution are both consistent with sexual reproduction. Through sexual
recombination, a multitude of combinations of microsatellite markers and mating-type
loci can be generated, whereas balancing selection for the mating-type locus and
Mendelian segregation accounts for equal distribution of the two mating types. Clonal
expansion by asexual reproduction on the other hand would result in a population with
low genetic variation and an unbalanced mating-type ratio. Here, we found TR46

3

isolates of either mating type and of different microsatellite types. Therefore, we
expected that the novel TR46

3 genotype originated from a sexual cross; we tested
progeny from a cross between two TR46 strains and were indeed able to recover this
genotype. One mechanism that may underpin this new resistance genotype may have
been unequal meiotic crossing over, as illustrated in Fig. 6 (58). The mispairing in the
repeat region of 46 bp during the meiotic process may lead to even longer repeats in
the promoter. As expected, the TR46

3 strain obtained from the cross contained only the
two mutations Y121F and T289A present in the parental TR46 strains. The two additional
mutations M172I and G448S, which are found in the natural TR46

3 isolates, must then
have come from parental strains with TR46, of which one or both have all four
mutations. Thus, this important observation suggests the potential occurrence of sex in
the compost.

In addition to these observations that support the notion of sexual reproduction, it
is important to note that compost heaps provide favorable conditions for sex. Several
key factors for sexual reproduction that have been identified under laboratory condi-
tions seem to be present in compost (38). Compost contains multiorganic resources,
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with inside the heap a warm, dark, low-O2, and high-CO2 environment as a result of
biological metabolic activity. A dynamic composting process with temperature gradi-
ents (20 to 70°C) and gas changes might therefore stimulate sexual reproduction of
A. fumigatus (45, 59). The extent to which these favorable conditions for sex are present
in the compost may differ for specific compost samples, which may explain the
difference in number of ascospores between the two compost samples after heat shock
(Fig. 3).

However, we are aware that the presence of sexual reproduction was not definitively
proven in our study. The effectiveness of the heat shock treatment was proven with a
suspension containing ascospores, but not asexual conidiospores, that were able to
survive a heat shock of 70°C for 1 h (38, 60). However, whether the same effectiveness
can be reached in a complex matrix such as compost has not yet been determined. We
found that although indeed the ascospores were heat resistant in compost, not all of
the 105 conidiospores were killed after 1 h at 70°C (J. Zhang, personal observation). A
previous study has also shown that a population of conidiospores may not completely
be killed by heat shock, depending on many factors, such as the freshness and
concentration of conidiospores, the type of strain, and the pH (61). Therefore, we
cannot definitively conclude that all colonies derived after heat shock of compost
material have originated from ascospores. However, the significant reduction in the
number of CFU of A. fumigatus after heat shock indicates that most if not all, conidio-
spores were killed. Furthermore, the observed genotype distribution among isolates
obtained from heat-treated compost (Table 2) provides strong evidence that these
isolates do originate from recombination through sexual reproduction. Direct light
microscopic observation of ascospores in compost samples failed as they could not be
clearly recognized, even after addition of ascospores (unpublished observations).

Conclusions and future outlook. Our study shows that azole-exposed compost can
serve as a hot spot as almost exclusively azole-resistant phenotypes were found there.
In addition to known resistance mutations, we found two new mutations and evidence
that these might evolve through sexual reproduction. Our data clearly indicate that the
full life cycle of A. fumigatus needs to be taken into account to explain the emergence
of azole resistance. The continued emergence of azole resistance mutations warrants
research into the mechanisms of resistance selection in the environment. Insights into
key factors involved in the selection or spread of resistance in A. fumigatus will help to
develop strategies that prevent resistance selection. Only then can this important class
be rescued for use for crop protection as well as treatment of Aspergillus diseases.

MATERIALS AND METHODS
Sampling and screening of A. fumigatus in azole-free and azole-containing compost. Six

samples were collected from each of two compost heaps: one originating from waste containing azoles
(Hillegom, The Netherlands) and one free of azoles (Wageningen, The Netherlands) (Fig. 2). To document
the presence of azole fungicides, two samples from each compost heap were analyzed for fungicide
residues using gas chromatography-tandem mass spectrometry (GC-MS/MS) and liquid chromatography-
tandem mass spectrometry (LC-MS/MS) by Eurofins lab—Zeeuws Vlaanderen (http://www.labzvl.nl/en).

FIG 6 A possible scenario indicating how unequal crossing over in a sexual cross between two strains with a double repeat TR46 can result
in a rare meiotic recombinant with the triple repeat TR46

3. Yellow boxes represent the tandem repeats in the promoter region of cyp51A
gene, and red ovals represent point mutations in the coding region of the cyp51A gene. The bent blue line indicates unequal crossover.
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Samples of 1 g compost were added to 10 ml sterile saline with 0.05% Tween and screened for the
presence of A. fumigatus by plating 50-�l samples on malt extract agar (MEA [36]) supplemented with
two antibiotics (10 �g/ml streptomycin and 15 �g/ml tetracycline [Sigma-Aldrich, Germany]) and
incubated at 37°C. Ten randomly selected colonies from each compost heap, which all showed Aspergillus
morphology, were identified as A. fumigatus genetically by sequencing of the �-tubulin and
carboxypeptidase-5 genes (38) and phenotypically by their capacity to grow at 48°C. The presence of
A. fumigatus ascospores was investigated by subjecting the sample to heat shock (1 h at 70°C) before
plating. This heat shock procedure has been shown to eliminate and greatly reduce A. fumigatus
conidiospores (resulting from asexual reproduction), but not ascospores (resulting from sexual repro-
duction) (38, 41). As a consequence, any colony growing after heat shock is likely to have originated from
a sexual spore. After 2 days, the colonies were counted and the survival rate was established.

Azole resistance phenotypes and genotypes of A. fumigatus cultures from compost. As we were
focused in this study on the sexual route of resistance development, we randomly picked 50 presumed
ascospore-derived isolates after heat shock from a W5 (azole-free) compost sample and an H4 (azole-
containing) compost sample with the highest A. fumigatus count. These isolates were genotyped for six
microsatellite markers (STR3 A, B, and C and STR4 A, B, and C) and the cyp51A gene and its promoter
region (62–64). The mating type was determined by sequencing the mating-type gene (40).

Susceptibility testing and cyp51A gene expression of TR variants (TR34, TR46, and TR46
3) found

from compost. Since we previously found that the level of resistance based on mycelial growth rate
(MGR) is highly correlated with the results from the MIC test, here we used the more straightforward and
reproducible MGR measurement as described before (36). The MGR of TR variants (TR34, TR46, and TR46

3)
that were isolated from the compost heaps was assayed under the condition of exposure to three
medical triazoles (itraconazole, voriconazole, and posaconazole). In addition, to compare the suscepti-
bility of TR46

3 with those of TR34 and TR46, the high resistance of TR46
3 was confirmed by MIC testing,

using a broth microdilution method according to EUCAST protocol E.DEF 60 9.2 (36, 65). The cyp51A
expression was analyzed from duplicate cultures of three different strains per TR variant. Expression
levels were calculated from Cyp51A/actin mRNA ratios and normalized for wild-type (WT) expression
levels (25).

Clinical implications of environmental azole resistance mutations. In five Dutch University
Medical Centres, clinical A. fumigatus isolates are routinely screened for azole-resistant phenotype using
agar supplemented with medical triazoles. Isolates that grow in the presence of azoles were sent to the
National Mycology Reference Laboratory at Radboud University Medical Centre for MIC testing and
genotypic characterization. Screening for triazole resistance mutations was performed using the Y121F
mutation for the TR46/Y121F/T289A genotype and L98H for the TR34/L98H genotype, respectively (66).
These two mutations have been shown to account for over 80% of clinical triazole resistance. If none of
these mutations were found in the resistant isolates, the full cyp51A gene was sequenced. In this study,
for all L98H- and Y121F-positive isolates collected between 2012 and 2015, the accompanying TR was
determined by PCR analysis (67), and for selected isolates, relevant clinical information was retrieved.

Sexual cross between two TR46 strains of opposite mating types from the same azole-
containing compost. As our results indicated a possible involvement of sexual reproduction in the
development of the new resistance mutation, we investigated the possibility that TR46

3 mutations arise
through sexual reproduction, so a pair of strains from the same azole-containing compost sample with
the TR46 resistance mutation and of the opposite mating type (isolates H40 [MAT1-1/TR46/Y121F/T289A]
and H35 [MAT1-2/TR46/Y121F/T289A]) were used for a sexual cross following the protocol of O’Gorman
et al. (38). After 4 months, cleistothecia were harvested, and 105 ascospores were heat shocked and
plated on MEA with posaconazole (2 mg/liter) for selection of TR46

3.
Statistical analysis. We tested the significance of differences in MGR and gene expression of the

cyp51A gene of the different TR variants using a one-way ANOVA with number of repeats as a nominal
factor. Pairwise differences between variants were tested post hoc using Fisher’s least significant
difference (LSD). Whether the mating-type distribution in the two composts was a deviation from a 1:1
ratio was tested using a chi-square test.
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